Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid.

نویسندگان

  • Li Cui
  • Daoyong Chen
  • Lei Zhu
چکیده

In this work, a novel cube-shaped cationic lipid based on the imidazolium salt of polyhedral oligomeric silsesquioxane (POSS) was complexed with double-stranded DNA. Because of the negative spontaneous curvature of the cationic POSS imidazolium lipid, an inverted hexagonal phase resulted above the melting point of POSS crystals. Depending on the competition between the crystallization of POSS molecules and the negative spontaneous curvature of cationic POSS imidazolium lipids, different self-assembled phase morphologies were obtained. A lamellar phase was obtained when the POSS crystallization was relatively slow. When the POSS crystallization was fast, an inverted hexagonal phase was obtained with POSS lamellar crystals grown in the interstitials of DNA cylinders. On the basis of a circular dichroism study, double-stranded DNA adopted the B-form helical conformation in the inverted hexagonal phase, whereas the helical conformation was largely destroyed in the lamellar phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of methylene blue using polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane nanocomposite

Polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane, nanocomposite hydrogel with 3-D network was synthesized via radical polymerization. Octavinyl polyhedral oligomeric silsesquioxane was used as crosslinker and nanofiller simultaneously in the preparation of the hydrogel. Hydrogel adsorption performance was determined by adsorption of methylene blue. The adsorption capacity was ev...

متن کامل

Building Blocks Precisely from Polyhedral Oligomeric Silsesquioxane Nanoparticles

Hierarchical self-assembled structures provide a “bottom-up” method to utilize relatively simple and low cost processes to generate nanoscale patterns (usually through amphiphilic low molecular weight surfactants or block copolymers). These self-assembled structures from block copolymers are generally driven by a combination of repulsive and attractive interactions between the block segments an...

متن کامل

Self-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulation.

Self-assembly of functionalized nanoscale building blocks is a promising strategy for "bottom-up" materials design. Recent experiments have demonstrated that the self-assembly of polyhedral oligomeric silsesquioxane (POSS) "nanocubes" functionalized with organic tethers can be utilized to synthesize novel materials with highly ordered, complex nanostructures. We have performed molecular simulat...

متن کامل

Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes.

Quaternary ammonium functionalized polyhedral oligomeric silsesquioxane (OctaAmmonium-POSS) units, widely employed as additives in ceramic and polymeric systems, possess many attributes which make them attractive as biocompatible drug carriers: nanoscale size, three-dimensional functionality, efficient cellular uptake, low toxicity, and high solubility.

متن کامل

Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)

Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2008